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Markov's Theorem Revisited
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The fact that Markov's Theorem holds for determinate measures is often
overlooked and the theorem is stated for measures with compact support as did
Markov. We give a brief survey of the history of the theorem as well as a proof in
the determinate case. We also prove a version of Markov's theorem in the
indeterminate case. The results are applied to the shifted moment problem.
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INTRODUCTION

The classical theorem of Markov [11] states that

lim Qn(z) = jd/-L(X)
n -+OX) PnC Z ) Z - x

for Z E C \ [a, b ], (I)

where /-L is a (positive) measure on the finite interval [a, b]. Here and in
the following Pn are the orthornormal polynomials associated with /-L, and
(Qn) are the corresponding polynomials of the second kind

(2)

Markov considered a measure with a density, but this reflects the period
and is not essential in his proof.

In this paper we look at the various extensions of Markov's Theorem
which have appeared since [11, 12]. The theorem holds in fact for any
determinate measure /-L, and that was proved by Hamburger in the
fundamental paper [10, Theorem 14, p. 292]. In the monographs by
Akhiezer [1] and Shohat and Tamarkin [21] Markov's Theorem is not
stated explicitly (but one can find equivalent statements without Markov's
name), and in Szego [24] and Chihara [7] the theorem is stated only for
measures on a finite interval, and this may lead to the erroneous conclu­
sion that the extension to more general classes of measures is not known.
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Hamburger's extension of Markov's Theorem is connected to complete
convergence of the associated continued fraction, a concept which was
introduced by Hamburger, who also proved that it is equivalent to deter­
minacy of the moment problem. In the first third of this century the
moment problem was intimately connected with the theory of continued
fractions, and in Perron's influential monograph on the subject, which
appeared in 3 editions in the period 1913 to 1957, d. [15, 17, 18], the
moment problem is treated from the continued fractions point of view.
Markov's Theorem is treated in all three editions and the extension by
Hamburger is contained in [17, 18]. We give more details below. In later
treatments of the moment problem functional analysis has replaced con­
tinued fractions as the main tool, and in, e.g., Akhiezer [1] continued
fractions only enter marginally.

In the sequel S = (sn)n ~ 0 denotes a Hamburger moment sequence,
normalized (so = 1) and assumed positive definite, i.e., <in = det %n > 0
for n ~ 0, where %n is the Hankel matrix (Si+)O" i, j" n' Any solution J.L
having S as sequence of moments is a probability measure with infinite
support. The polynomials (Pn) and (Qn) are uniquely determined by S with
the convention that Pn has positive leading coefficient.

For each n ~ 1 let An denote the set of zeros of Pn and consider the
discrete probability Tn with mass

It is well known that

and

k = 0,1, ... , 2n - 1,

(3)

(4)

d. Akhiezer [1, pp. 22, 31].
The basic notion of convergence for probability measures is weak

convergence: A sequence (J.Ln) of probabilities on a metric space X
converges weakly to J.L if

(5)
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for any continuous and bounded function f: X -+ Co For a treatment of
this classical concept see Billingsley [5].

Defining

A = n M N ,

N=l
where MN = U An'

n=N

(6)

we get a closed subset of IR, and it is clear that any natural solution Ji of
the moment problem, i.e., any weak accumulation point of the sequence
(-rn)n~I' cf. [7, p. 60] has supp(J,,t) ~ A.

Furthermore, if for any solution Ji of the moment problem we define
alJ. = infsupp(Ji), blJ. = sup supp(Ji), then A <;;; MN <;;; [alJ.' blJ.].

1. THE DETERMINATE CASE

We prove Hamburger's extension of Markov's Theorem using the fol­
lowing result.

THEOREM 1.1. Method of Moments. Suppose that (Jin) and Ji are
probabilities on IR with moments of every order and that Ji is det( H).

If

for k = 0,1, ...

then Ji n -+ Ji weakly.

For a proof see Feller [9]. A very general version of the method of
moments, including measures on IRk can be found in [4].

THEOREM 1.2. Assume that Ji is det(H). Then

forz E C \A, (7)

and the convergence is uniform for z in compact subsets of C \ A.

Proof By (4) the kth moment of Tn converges for n -+ 00 to the kth
moment of Ji for any k (they are in fact equal for n sufficiently big). By
the method of moments Tn -+ Ji weakly on IR and a fortiori on the closed
subset MN for any N E N, since it contains sUPP(Ji) and SUpp(Tn ) for
n ~ N.
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It follows in particular that

lim f d'TnC x) = f dp.( x)
n--+oo Z -x z-x
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for any Z E C \ A. To see that the convergence is uniform for Z E K,
where K ~ C \ A is compact, we notice that K n M N = 0 for N suffi­
ciently big, and then there exists C > 0 such that

Iz - xl ~ C for Z E K, X E MN'

For given e > 0 there exist z l' ... , Z p E K such that the discs D( z;, d
cover K. For z E K we choose i E {t, ... , p} such that Iz - z,l < e, and
hence for x E MN

I
1 1 I e

----- ~-2'

z-x z;-x C

For n ~ N we finally get

from which the uniform convergence follows. I

Remark 1.3. One cannot replace A by supp(p.) in (7). If p. is a
symmetric measure then

if n is even
if n is odd,

so if supp(p.) has a hole containing 0, e.g., supp(p.) = IR \ ] - 1,1[, then
(7) cannot hold for z = O.

Historical Remarks

Already Markov [11] noticed that his theorem holds for some measures
with unbounded support including the densities leading to the Laguerre
polynomials. In [16] Perron extended the theorem to measures p. on a
half-line [a, oo[ satisfying

I· . f"lS:Imln -- < 00
n----+ XJ n

(8)

(noticing that Sn > 0 for n sufficiently big), but he could only prove the
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convergence in (7) for Re z < a unless a ~ 0, This restriction in the
convergence was removed by Szasz [23] who also removed the restriction
about support. Without restriction on the support Szasz replaced condi­
tion (8) by

2n~

I, 'f y S
2n

1m In --c- < 00
n--+oo vn

(9)

Riesz showed in [19] that the following weaker condition is sufficient

2n~

I, 'f Y S
2n

ImIn -- < 00,
n --+00 n

which was later improved by Carleman [6] to

'" 1E -2n-- = 00.() vs;:

( 10)

(11)

The conditions (8)-(10 are in fact conditions which ensure determinacy
of the moment sequence. In the second edition of Perron's monograph
[17] it is shown that (10) implies determinacy [17, Satz 14, p. 413] and that
(7) holds for all z E C \ IR [17, Satz 16, p. 418]. It is clear that the proof
uses only the determinacy of the moment sequence, but apparently Perron
has not considered determinacy to be so important a concept that he
would use it as an assumption in a theorem.

In [17] Perron does not discuss the complete convergence (introduced in
[10]) of the associated continued fraction, but this is done in [18, p. 220].
The associated continued fraction is of Grommer type [18, p. 192] and is
given as

1
( 12)

z - ao - ------b-:Z:---­

I
z-a,- ----­

Z - az - ' .

where an' bn are the coefficients of the recurrence relation

The approximating fractions of (12) are Q/z)/Pn(z), cf. [1, p. 24]. The
continued fraction (12) is called completely convergent with limit a at the
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uniformly for t E IR. Hamburger proved that the associated continued
fraction is completely convergent for all z E C \ IR if and only if the
moment sequence is determinate, and in the affirmative case the limit is
!(dJL(x)/(z -x)). In [18] this follows by combination of Theorems 4.11
and 4.15.

We finally note that Theorem 1.2 follows from Theorem 4.1 in [21] and
from Theorem 1.3.3 in [1].

The paper by Van Assche [26] contains a far reaching generalization of
Markov's Theorem in the determinate case.

2. THE INDETERMINATE CASE

In this case the set of measures admitting s as a sequence of moments is
described via four entire functions A, B, C, D, cf. [1, p. 98]. The Nevan­
linna extremal solutions (JL t)t E ~ U (OCJ are given by the formula

j
dJLt(X) = A(z)t - C(z)

z-x B(z)t-D(z)'
(14)

Note that IR* = IR U lao} shall be considered topologically as the one-point
compactification of IR. To say that an E IR converges to ao therefore means
that Ian I ~ 00 in the ordinary sense.

THEOREM 2.1. Assume that JL is indeterminate.
If

in IR* ,

then

and the convergence is uniform for z in compact subsets of C \ supp(JL,).

Proof Since Pn and Qn have no common zeros the quotient
P,,(O)/Q/O) is well-defined in IR*. Putting a" = P,,(O)/Q,,(O) we have by
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[1, p. 14]
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Qn ( z)
---=
Pn ( z)

AAz)an - Cn(z)

Bn(z)an - DAz)
(15)

for z E C with the obvious interpretations if P/ z) = 0 or an = 00. The
polynomials An' Bn, Cn' Dn converge to the entire functions A, B, C, D
uniformly for z in compact subsets of C. Therefore, if an ~ a in ~* then

A(z)a - C(z)

B(z)a - D(z)
(16)

uniformly for z in compact subsets of C \ Na , where

Na = {z Eel B ( z )a - D ( z) = O},

Nx = {z E CIB(z) = O}.

a*' 00,

We recall that the Nevanlinna extremal measure IJ. a is discrete with
supp(IJ.) = Na . The assertion of the theorem now follows from (4). I

Remark 2.2. It follows easily from (15) that the convergence of
P,,(O)/Qn(O) in JR* is also a necessary condition for the convergence of
Qn(z)/Pn(z) in C \ JR or even in just one point Zo E C \ JR. Note that IJ. a

is a natural solution so that sUPP(IJ.a) ~ A.

Remark 2.3. If IJ. is a symmetric indeterminate measure on JR then we
see as in Remark 1.3 that Pn(O)/Qn(O) is divergent in JR*, so in this case
QII(z)/Pn(z) does not converge. However, we get

for z E C \ supp( IJ."J

for z E C \ supp( IJ.0),

and the convergence is again uniform for z in compact subsets of the
domains in question.

3. THE STIELTJES CASE

We now consider the case where s is a Stieltjes moment sequence, i.e.,
there exists at least one solution IJ. of the moment problem for which
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supp(JL) c [0,00[. Equivalently both s and the shifted sequence s =

(sn + I)n" 0 have positive Hankel determinants. A Stieltjes moment se­
quence can be determinate in the sense of Stieltjes, meaning that there is
precisely one solution supported by [0,00[. To have a short notation we
write det(S) in this case, and the opposite case is denoted indet(S).
Similarly we write det(H) or indet(H) if the moment sequence is determi­
nate or indeterminate considered as a Hamburger moment sequence. We
recall that a Stieltjes moment sequence can be det(S) and yet indet(H),
cf. [1 p. 240; 21 p. 76].

To a Stieltjes moment sequence there is a so-called corresponding
continued fraction [18, p. 191] which is of Stieltjes type. We write it in the
terminology of [1, pp. 232-233],

1

II +---­
m 2 z + '.

(17)

where m i , Ii > 0 are related to the coefficients an' bn of the three term
recurrence relation (13) by

n ~ O.

n ~ 1 (18)

( 19)

The approximating fractions S/z)/Tn(z), n ~ 0 are given by the equa­
tions

with

(22)

d. [17, p. 5]. Eliminating S2n+I(Z), T2n + I(Z) from these equations we see
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that Vmn+IS2n(-Z),Vmn+l T2/-z) satisfy the recurrence relation (13).
Using that Pn(z), Q,,(z) are uniquely determined by (13) and the initial
conditions

o

1

S2n-l( -z)
-m ---­

I T2,,_I(-Z)

we see that

By (20), (21), and (23) we then get

S2n( - z) Q,,( z)
-m

IT
2
,,(-z) P,,(z) ,

vm,,/mn+1 Q,,(z) + Q,,_I(Z)

..;m" / m" + I P" ( z) + P" _ 1( z) .

From (20)-(22) we get

(23)

(24)

(25)

n~O

and hence by (23)

so that

(27)
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which converges to

Using [1, p. 14], (25) can be rewritten
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(28)

Stieltjes proved in [22] that

(29)

i = 0, - 1, Z E C \] - 00,0],

where pYl, i = 0, - 1 are solutions to the Stieltjes moment problem, and
he furthermore showed that the problem is det(S) if and only if D/" +
m,,) = 00, d. [18, Satz 4.9, 4.10].

In particular already Stieltjes knew that

Z E C \ [0,00[, (30)

which can be rephrased as "Markov's Theorem holds for an arbitrary
StieItjes moment problem." If the problem is det(S) then J-l(O) is of course
the unique solution supported by [0,00[. That Markov's Theorem holds in
this form for a sequence which is det(S) was noticed by Askey and Wimp
[2].

In case the problem is indet(S) or more generally indet(H) we next
identify the solutions J-l(i) as Nevanlinna extremal measures and determine
the corresponding parameters t.

THEOREM 3.1. Consider a Stieltjes moment sequence which is indet( H).
Then f.J.(O) = f.J. a , where a is gillen by (28) and J-l<-I) = f.J.o.

Proof The assertions follow from Theorem 2.1 and Eqs. (28) and (29).

I
Remark 3.2. It is worth noticing that the Stieltjes problem in Theorem

3.1 is det(S) if and only if a = O. This is easily derived from the criteria in
[1, pp. 237, 240]. In this case f.J. a = J-lo is the unique solution concentrated
on [0,00[.



270 CHRISTIAN BERG

For a < 0 the problem is indet(S) and the Nevanlinna extremal solu­
tions (1l)/ EiFI.* for which supp(ll t ) ~ [0, <Xl[ are characterized by t E [a, 0],
cf. [8, p. 340).

4. ApPLICATIONS TO THE SHIFTED MOMENT PROBLEM

Let Il be a probability with infinite support and moments of any order.
The polynomial sequences Yn = P/ z) and Yn = Qn( z), n ~ 0, satisfy the
second order difference equation

n ~ 1. (31 )

The sequence (Pn(z» resp. (Q,,(z» is uniquely determined by (1) and
the initial conditions

1
Yo= l'Yl = [;(z-a o),

o
resp. Yo = 0, Yl =

bo
(32)

Replacing (a,,) and (bn) in (31) and (2) by the shifted sequences iin = an + I'

bn = bn+ l , the corresponding unique solutions (Pn(z» and ((2n(z» are
given by

(33)

(34)

These equations are not new. Equation (3) can be found in Sherman [20),
and both equations are derived in Belmehdi [3) and Pedersen [14]. By
Favard's theorem the (Pn ) are the orthonormal polynomials associated
with some probability ji, and the (ct) are the corresponding polynomials
of the second kind. This new moment problem will be called the shifted
moment problem. The Jacobi matrix j for this problem is obtained from
the Jacobi matrix J for the original problem by deleting the first row and
column. Let (sn) resp. Un) denote the corresponding moment sequences.
Then

meaning that sn is the element in the first row and first column of the nth
power of the matrix J and similarly with Sn' This shows how sn can be
expressed in terms of (an) and (bn). By (33) we immediately get that the
two moment problems are determinate simultaneously, and we now relate
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the Stieltjes transforms of the measures IL and ii in the determinate case.
The result is due to Sherman [20, p. 68]. See also Nevai [13].

THEOREM 4.1. Suppose that IL and hence ii are det(H). Then

2jdii(X) _ _ _ (jdlL(X) )-1
bo - Z aoz-x z-x

forzEC\~. (35)

Proof By (33) and (34) we get for z E C \ ~

Qn(z) z - ao 1 Pn+l(z)

Pn(z) =~ - b5 Qn+I(Z) ,
(36)

(37)

and the result follows from Theorem 1.2. I
EXAMPLE 4.2. See Sherman [20]. If IL is the Arcsin-distribution with

density (I/1TXI - X 2)-1/2 on the interval] - 1,1[, we find that ii has the
density (2/1TXI - X

2 )1/2. This can be verified by inserting the expressions
for IL and ii in (35), but follows also from the fact that the corresponding
orthonormal polynomials are the Cebycev polynomials of the first and
second kind. Note that an = 0, n ~ 0, and bo = 1/ Ii, bn = 1/2 for
n ~ 1. The shifted sequences are constant, an = 0, bn= 1/2, n ~ 0,
which shows that ii = {L, i.e., ii is fixpoint under the operation --. All the
fixpoints under - are the image measures of ii under affine transforma­
tions x ~ ax + {3, a > 0, {3 E ~ for which the (an) and (bn) sequences
are the constant sequences (f3) and (a/2).

In the Stieltjes case, which is characterized by bk > °and the positivity
of the quadratic forms

n n-]

~ ak~f + 2 ~ bk~k~k+l'
k~O k=O

cf. [1, p. 233), the shifted moment problem is again a Stieltjes problem. If
the original Stieltjes problem is indet( H) so is the shifted problem, and we
can use Theorem 3.1 to obtain the following:

THEOREM 4.3. Consider a Stieltjes problem which is indet(H), let lL a be
the Nevanlinna extremal solution of the Stieltjes problem given by (28) and
let ii c:i be the corresponding solution of the shifted problem.

Then we have for Z E C \ ~

b~jd:~:) = Z - an - (jd:~:) r',
640/78/2-8
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and the parameters a and a are related by the equation

a= (38)

Proof We know from (27) that (Pn(O)/Q/O)) is strictly increasing with
limit a given by (28). Since P1(O)/QlO) = -au we have a o + a > O.

By (33), (34) we get

--------~

P,,(O)

Q,,(O)

b(~Q,,+ 1(0)

auQ"+I(O) + P,,+I(O)
(39)

so a = -b5/(au + a). The formula (37) follows as in the proof of Theo­
rem 4.1. I

Remark 4.4. Formula (37) is a special case of a formula in [14] which
establishes a one-to-one correspondence between the convex sets of solu­
tions to an indeterminate Hamburger problem and its shifted counterpart.

Remark 4.5. Formula (38) shows that a < 0 even if a = O. Thus, the
shifted Stieltjes problem is always indet(S) although the original problem
can be det(S) (a = 0) or indet(S) (a < 0).

The technique above can be used to give a formula for the moment sn
in terms of the moments (s,,). A similar formula appears in Sherman [20,
p. 79], but it seems justified only in the determinate case, and the sign in
front of the determinant is incorrect.

PROPOSITION 4.6. Let (s,,) be a normalized Hamburger moment se­
quence and (5,,) the shifted counterpart. Then

for n 2': 0,

where

0 0 So SI

0 0 Sl S2

f3" = (_1)0/21,,(,,+\) (40)

So SI sn-2 S,,_I

SI S2 S,,_I S"
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Proof If /.L is any positive measure with moment sequence (sn) then
the Stieltjes transform

F(z) = fd/.L(X)
z-x

has the asymptotic series

for Iz 1-+ 00 in any sector arg(z) E k 'l1" - E[ in the upper half-plane.
In the determinate case (35) shows that

2f djL(x)
bo z-x

has an asymptotic series given by the right-hand side of (35), i.e., by

z - a _ z ;, f3n = _ ;, f3n+2
o '-' zn f... zn+1'

n=O n=O

where (f3n) is uniquely determined such that

(41)

n

I: sn- j f3 j = DnO '
j=O

By Cramer's rule f3n is given as

n ~ o.

So 0 0 1

SI So 0 0

f3n =

sn-\ sn-2 So 0

sn sn-1 s\ 0

0 0 So SI

0 0 s] S2

= ( -1 )O/21n<n +])

So s] sn-2 sn-]

S\ S2 sn-1 Sn

and hence b~sn = -f3n+2'
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In the indeterminate case we choose an increasing sequence (n) of
positive integers such that

in IR*.

By the first equality sign in (39) we get

=: i.

By the same reasoning as in Theorem 2.1 we obtain

for Z E C \ IR

for z E C \ IR,

so by (36) we find

_ -I

b 2jdJii(X) = _ _ (jdJit(X»)
o z a oz-x z-x

(42)

By the same reasoning as in the determinate case this formula yields the
asymptotic series (41) for the left-hand side of (42), and this shows again
(40). I
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